Mechanistic basis of otolith formation during teleost inner ear development.

نویسندگان

  • David Wu
  • Jonathan B Freund
  • Scott E Fraser
  • Julien Vermot
چکیده

Otoliths, which are connected to stereociliary bundles in the inner ear, serve as inertial sensors for balance. In teleostei, otolith development is critically dependent on flow forces generated by beating cilia; however, the mechanism by which flow controls otolith formation remains unclear. Here, we have developed a noninvasive flow probe using optical tweezers and a viscous flow model in order to demonstrate how the observed hydrodynamics influence otolith assembly. We show that rotational flow stirs and suppresses precursor agglomeration in the core of the cilia-driven vortex. The velocity field correlates with the shape of the otolith and we provide evidence that hydrodynamics is actively involved in controlling otolith morphogenesis. An implication of this hydrodynamic effect is that otolith self-assembly is mediated by the balance between Brownian motion and cilia-driven flow. More generally, this flow feature highlights an alternative biological strategy for controlling particle localization in solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma membrane calcium ATPase required for semicircular canal formation and otolith growth in the zebrafish inner ear.

Fish otoliths consist of >90% calcium carbonate, the accretion of which depends on acellular endolymph. This study confirms the presence of plasma membrane calcium ATPase 1a isoform (Atp2b1a) in the auditory and vestibular system of a teleost fish. As shown by in situ hybridization, zebrafish atp2b1a is expressed mainly in larval otic placode and lateral-line neuromast as well as in the hair ce...

متن کامل

High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish

The rapid growth of aquaculture raises questions about the welfare status of mass-produced species. Sagittal otoliths are primary hearing structures in the inner ear of all teleost (bony) fishes and are normally composed of aragonite, though abnormal vaterite replacement is sometimes seen in the wild. We provide the first widespread evaluation of the prevalence of vaterite in otoliths, showing ...

متن کامل

Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear.

Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear...

متن کامل

Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity.

Cadherin-11/Cdh11 is expressed through early development and strongly during inner ear development (otic placode and vesicle). Here we show that antisense knockdown of Cdh11 during early zebrafish development interferes with otolith formation. Immunofluorescence labeling showed that Cdh11 expression was concentrated on and within the otolith. Cdh11 was faintly detected at the lateral surface (s...

متن کامل

Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts.

The vitamin A-derived morphogen retinoic acid (RA) plays important roles during the development of chordate animals. The Aldh1a-family of RA-synthesizing enzymes consists of three members, Aldh1a1-3 (Raldh1-3), that are dynamically expressed throughout development. We have searched the known teleost genomes for the presence of Raldh family members and have found that teleost fish possess orthol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2011